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Abstract. We show that the quantum field theoretical formulation of theτ -function theory has a
geometrical interpretation within the classical transformation theory of conjugate nets. In particular,
we prove that (i) the partial charge transformations preserving the neutral sector are Laplace
transformations, (ii) the basic vertex operators are Lévy and adjoint Ĺevy transformations and
(iii) the diagonal soliton vertex operators generate fundamental transformations. We also show that
the bilinear identity for the multicomponent Kadomtsev–Petviashvili hierarchy becomes, through a
generalized Miwa map, a bilinear identity for the multidimensional quadrilateral lattice equations.

1. Introduction

The notion ofτ -function is a cornerstone in the theory of integrable systems since its discovery
in 1976 by Hirota [17]. It allows us to reformulate many integrable equations as bilinear
equations forτ -functions and provides suitable methods for finding soliton solutions. In
a series of papers [33], Satoet al introduced the concept ofτ -function in the framework of
quantum field theory of free fermions in two-dimensional space-time. They were motivated by
the fact that certain limits of correlation functions of the two-dimensional Ising model provide
solutions of the Painlev́e III equation [20]. As a result, they revealed an unexpected link with the
isomonodromonic deformation theory of linear differential equations, a classical mathematical
subject started by Riemann in the last century and investigated by Schlessinger [36], Fuchs
[15] and Garnier [16] among others. Later on [22], it was shown that the same quantum field
theoretical formulation applies equally well for describing the Kadomtsev–Petviashvili (KP)
hierarchy and its multicomponent extension in terms ofb-c systems of ghosts fields. This
description turned out to be related with certain aspects of string theory as, for example, the
connection between bosonic string amplitudes and Hirota’s difference equation [32, 30, 18].
Furthermore, the Grassmannian model [35] of theτ -function theory is strongly related with
the operator formalism in string theory and conformal field theory [38, 2]. In this context, it is
worth mentioning that the Korteweg–de Vries hierachy (a reduction of KP) has appeared in a
non-perturbative description of two-dimensional quantum gravity [6].
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On the other hand, the theory of conjugate nets [7, 3, 13] is a classical subject in differential
geometry developed by distinguished geometers of the last century and the begining of the
present one (Gauss, Lamé, Bonet, Cayley, Bianchi, Darboux and Eisenhart). In particular,
the transformation theory of conjugate nets is a well-established subject [13]. The orthogonal
reduction is strongly connected with the theory of quasilinear systems of hydrodynamic type,
which in the two-dimensional case includes the Euler equations of an incompressible fluid.
Riemann devoted part of his work to the classification of these systems in terms of Riemann
invariants, this was extended to the multidimensional case by Tsarev [37] showing that the
classification problem of Hamiltonian systems of hydrodynamic type is equivalent to the study
of orthogonal nets. Let us also mention that conjugate nets are connected with the description
of the three wave resonant interaction. The discrete analogues of the conjugate nets and
quadrilateral lattices are central objects of the integrable discrete geometry which is developing
nowadays [10, 11]. Finally, Egoroff systems (a particular type of conjugate nets) have recently
found application in topological field theory; namely, in the resolution of indescomposable
Witten–Dijkgraaf–Verlinde–Verlinde associativity equations [12].

The aim of this paper is to show that the basic operations associated with the
multicomponent KP theory have a distinguished geometric interpretation in terms of conjugate
nets, their transformations and discretizations. Thus, the quantum field theoretical scheme
introduced by the Kyoto school is strongly tied up not only with monodromy problems and
integrable systems but also with the developments that started last century in the arena of
classical differential geometry.

The layout of the paper is as follows, the first two sections have a introductory character:
in section 2, we introduce standard material on the quantum field theory description of the
multicomponent KP hierarchy (for an alternative approach see [21, 5]) and, in section 3, the
theory of conjugate nets and its transformations, namely Laplace, Lévy, adjoint Ĺevy and
fundamental transformations. The next two sections, section 4 and section 5, contains the
main results of our paper. In section 4 we show the following.

(1) The partial charge transformations preserving total charge, i.e. the Schlessinger
transformations, are Laplace transformations.

(2) The basic vertex operators can be identified with the Lévy and adjoint Ĺevy
transformations.

(3) The diagonal soliton vertex operator generates a fundamental transformation.

In this manner a complete list of equivalences among the basic transformations of both schemes
arises. We underline that these correspondences are linked with a series of Fay identities for
theτ -function.

Finally, in section 5, we extend the Miwa transformation to the multicomponent case
to obtain the quadrilateral lattice. This result, as we shall exhibit, has a natural geometrical
interpretation.

2. b-c systems andτ -functions

Theb-c system of quantum fields, which appears as the system of ghost fields in string theory,
is constructed in terms of the anticommutation relations

{bi(z), cj (z′)} = δij δ(z− z′)
{bi(z), bj (z′)} = {ci(z), cj (z′)} = 0

wherebi(z) andci(z), i = 1, . . . , N , are free charged fermion fields defined on the unit circle
S1, andδ(z− z′) is the Dirac distribution onS1.
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The Clifford algebra generated by theb-c system admits a representation in terms of
bosonic variables. In this representation the fields act on the Fock spaceH of complex-valued
functions

τ =
∑
`

τ(`, t)λ`

with

` := (`1, . . . , `N) ∈ ZN
t := (t1, . . . , tN) ∈ CN ·∞ ti := (ti,1, ti,2, . . .) ∈ C∞
λ := (λ1, . . . , λN) ∈ CN λ` := λ`1

1 . . . bλ
`N
N .

The representation of theb-c generators takes the form [9]:

bi(z) := 0i(z)Si(z)
∏
j>i

πj ci(z) := 0∗i (z)S∗i (z)
∏
j>i

πj i = 1, . . . , N

where

0i(z) := exp(ξ(z, ti ))V−i (z) 0∗i (z) := exp(−ξ(z, ti ))V+
i (z)

Si(z) := λizλi∂/∂λi S∗i (z) := 1

λi
z1−λi∂/∂λi

πi(λ
`) = (−1)`iλ`.

Here we are denoting

ξ(z, ti ) :=
∞∑
n=1

znti,n

andV±i are operators defined by

V±i (z)f (t) := f (t± [1/z]ei ) [1/z] :=
(

1

z
,

1

2z2
,

1

3z3
, . . .

)
being{ei}Ni=1 the canonical generators ofCN .

Alternatively, the action of theb-c system can be formulated as

bi(z)τ (`, t) := (−1)
∑

j>i `j z`i−1 exp(ξ(z, ti ))τ (`− ei , t− [1/z]ei )

ci(z)τ (`, t) := (−1)
∑

j>i `j z−`i exp(−ξ(z, ti ))τ (` + ei , t + [1/z]ei ).

The Fock space decomposes into a direct sum of charge sectors

H =
⊕
q∈Z
Hq Hq = {τ ∈ H : Qτ = qτ }

where the total charge operatorQ := ∑N
i=1Qi is the sum ofN commuting partial charges

Qi = λi∂/∂λi , i = 1, . . . , N ; they correspond to theN different flavours of fermions of the
model.

TheN -component KP hierarchy can be formulated as the following bilinear identity

B(τ ⊗ τ) = 0 τ ∈ H0 (1)

where

B :=
∫
S1

dz

z

N∑
i=1

bi(z)⊗ ci(z).
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In terms of the componentsτ(`, t) we have∫
S1

dz
N∑
m=1

(−1)
∑

j>m `j+`
′
j exp(ξ(z, tm − t′m))z`m−`

′
m−2

×τ(`− em, t− [1/z]em)τ(`
′ + em, t′ + [1/z]em) = 0 (2)

for anyt, t′ and`, `′ such that̀ 1 + . . . + `N − 1= `′1 + . . . + `′N + 1= 0.
Let us mention that, as is well known, in the fermionic picture of theτ -function one can

define a vacuum in such a manner that theτ -function becomes the vacuum expectation value
of a suitable element of the Clifford algebra [9].

It can be shown that

[0i ⊗ 0i,B] = [0∗i ⊗ 0∗i ,B] = 0

i.e., for any solutionτ of (1) the functions0iτ and0∗i τ satisfy (1) as well. Hence, the vertex
operators0i and0∗i , i = 1, . . . , N , constitute a set of symmetries of (1).

In our subsequent analysis we will fix a given` and denote

τ(t) := τ(`, t)
τij (t) := Sij τ (t) := τ(` + ei − ej , t).

Observe that the vectorsαij = ei −ej are the roots of theAN−1 root system, so that any linear
combination of them with integer coefficients is a point in the corresponding root lattice. The
shift operatorsSij along the root lattice vectorsαij correspond to the so-called Schlessinger
transformations in monodromy theory [8, 19, 26] and satisfy the following relations

Sij ◦ Sji = id (3)

Sij ◦ Sjk = Sik Sij ◦ Ski = Skj . (4)

This root lattice models all the possible transformations in the partial charges that preserves
the total charge. Moreover,Sij are symmetries of (1).

TheN × N matrix Baker functionψ and its adjointψ∗ can be defined in terms of theτ
function as

ψij (z, t) = εij zδij−1 τij (t− [1/z]ej )

τ (t)
exp(ξ(z, tj ))

ψ∗ij (z, t) = εjizδij−1 exp(−ξ(z, ti )) τij (t + [1/z]ei )

τ (t)

(5)

whereεij := sgn(j − i), j 6= i (εii := 1).
Observe that we have

ψ(z, t) := χ(z, t)ψ0(z, t)

ψ∗(z, t) := ψ0(z, t)
−1χ∗(z, t)

(6)

whereψ0(z, t) = diag(exp(ξ(z, t1)), . . . ,exp(ξ(z, tN))), andχ andχ∗ are the bare Baker
functions with the following asymptotic expansion

χ(z) ∼ 1 +βz−1 +O(z−2) z→∞
χ∗(z) ∼ 1− βz−1 +O(z−2) z→∞ (7)

and the matrixβ is given by

βii(t) := −∂ ln τ(t)

∂ui
i = 1, . . . , N

βij (t) := εij τij (t)
τ (t)

i 6= j i, j = 1, . . . , N
(8)
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with uk := tk,1, k = 1, . . . , N .
Thus, by setting̀ → ` + ei and`′ → `− ej in (2) one obtains∫

S1
dz ψ(z, t)ψ∗(z, t′) = 0. (9)

The symmetry operators0i and0∗i of (1) induce a corresponding action, sayGi andG∗i ,
respectively, on Baker functions:

Gi (p)ψ(z, t)[V−i (p)ψ(z, t)]
(
−p
z

)Pi
G∗i (p)ψ(z, t) = [V+

i (p)ψ(z, t)]

(
− z
p

)Pi
.

HerePi stands for the matrix with elements(Pi)jk = δij δik. Notice that in order thatV±i ψ(z, t)
be convergent it is required that|p| > |z|.

Both bilinear identities (2) and (9) are useful for characterizing theN -component KP
hierarchy. In particular, (9) is suitable for formulating the Grassmannian approach to the
hierarchy [35], which in turn is very convenient in the derivation of the linear system of
equations for the Baker functions. Let us, for instance, outline this approach for the Baker
functionψ . To this end, we denote byW the set ofN ×N matrix functionsϕ(z) such that:∫

S1
dz ϕ(z)ψ∗(z, t′) = 0

for all t′ in the definition domain ofψ∗. Under appropriate conditions the setW belongs to an
infinite-dimensional Grassmannian manifold [35]. From (9) it follows thatW is a leftMN(C)-
module, withMN(C) being the ring ofN × N complex matrices. We shall use the standard
notationEij for the linear basis inMN(C), and in particularPi = Eii . As a consequence of
(9) and the form of the asymptotic expansion ofψ∗ asz→∞ one has that for anyt:

W =
⊕
n>0

MN(C) · vn(t) vn(z, t) =
( N∑
k=1

∂

∂uk

)n
ψ(z, t). (10)

Notice that

vn(z) ∼ (zn +O(zn−1))ψ0(z) z→∞. (11)

Thus, the linear system for theN -component KP hierarchy results from the decompositions of
the time derivatives ofψ in termsvn, n = 0, . . . ,∞. In particular, by decomposingPi∂ψ/∂uk,
i 6= k, one gets

∂ψi
∂uk
= βikψk (12)

with

ψi := (ψi1, . . . , ψiN).
Proceeding in a similar way for the adjoint Baker function we arrive at

∂ψ∗j
∂uk
= ψ∗kβkj j 6= k (13)

where

ψ∗i :=
 ψ∗1i

...

ψ∗Ni

 .
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The compatibility of either (12) or (13) leads to the Darboux equations for theβ ’s:

∂βij

∂uk
= βikβkj i, j andk different. (14)

As for the bilinear identity (2), the evaluation of the residue at infinity of the integrand
provides the Hirota representation of theN -component KP hierarchy. In particular,

τ
∂2τ

∂ui∂uj
− ∂τ

∂ui

∂τ

∂uj
− τij τji = 0 i 6= j (15)

τ
∂τij

∂uk
− τij ∂τ

∂uk
− εij εikεkj τikτkj = 0 i, j andk different (16)

being (16) the Hirota form of the above Darboux equations.
By setting`→ ` + ei and`′ → ` + ek − el − ej in (2) we obtain

εij εklτSik(τjl) + εilεjkτikτjl − εikεjlτilτjk = 0 i, j, k andl different. (17)

This relation, which can be found in [21], is just a Fay trisecant formula for theta functions on
Riemann surfaces [28].

3. Conjugate nets and quadrilateral latices

The Darboux equations (14) for the so-called rotation coefficientsβij characterizeN -
dimensional submanifolds ofRM , N 6 M, parametrized by conjugate coordinate systems
(multiconjugate nets) [7], and are the compatibility conditions of the following linear system:

∂Xj

∂ui
= βjiXi i, j = 1, . . . , N i 6= j (18)

involving M-dimensional vectorsXi , tangent to the coordinate lines. The so-called Lamé
coefficientsHi satisfy

∂Hj

∂ui
= βijHi i, j = 1, . . . , N i 6= j

in terms of which the pointsx of the net are found by integrating the following equation

∂x

∂ui
= XiHi i = 1, . . . , N.

Thus, given the Baker functionψ , one can construct conjugate nets withβ ’s as appearing
in (7) and with the tangent vectorsXi being the rows of the matrix

X(t) =
∫
S1

dz ψ(z, t)f (z) (19)

for some distribution matrixf (z) ∈ MN×M(C). Given the adjoint Baker functionψ∗, the
Lamé coefficients are given by the entries of the row matrix

H(t) =
∫
S1

dz g(z)ψ∗(z, t) i = 1, . . . , N (20)

for some distribution row matrixg(z) ∈ CN .
Therefore, we arrive at the following proposition.

Proposition 1. The solutions of the N-component KP hierarchy describeN dimensional
conjugate nets with coordinatesui = ti,1, i = 1, . . . , N , while the remaning timesti,k, for
k > 1, describe integrable iso-conjugate deformations of the nets.
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Figure 1. The Laplace transformation.

In particular, forN = 2, the Davey–Stewartson hierarchy describes the iso-conjugate
deformations of two-dimensional conjugate nets [23].

Transformations of conjugate nets have been extensively studied in the literature [13] and
the most convenient way to characterize them is through the notion of congruences of lines.
The basic transformations of conjugate nets are listed below.

(i) The Laplace transformationLij (x), i 6= j , of a conjugate netx is thej th focal net of
the ith tangent congruence ofx [7]; in simple terms it means that the line tangent to theith
coordinate line at a pointx of the net is tangent to thej th coordinate line of the transformed
net at the corresponding pointLij (x) (see figure 1).

It turns out [7, 11] that the position points of the transformed net are given by

Lij (x) = x− Hj
βij
Xi .

The corresponding transformation for the rotation coefficientsβij are [14]

Lij (βij ) = βij
(
βijβji − ∂

2 logβij
∂ui∂uj

)
(21)

Lij (βji) = 1

βij
(22)

Lij (βki) = βkj

βij
(23)

Lij (βjk) = −βik
βij

(24)

Lij (βik) = −βij ∂
∂ui

(
βik

βij

)
(25)

Lij (βkj ) = βij ∂

∂uj

(
βkj

βij

)
(26)

Lij (βkl) = βkl − βkjβil
βij

(27)
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Figure 2. The Lévy transformation.

where all the indices,i, j , k and l, are different. It can be also shown that the Laplace
transformations satisfy the following relations [14]

Lij ◦ Lji = Lji ◦ Lij = id (28)

Lij ◦ Ljk = Lik Lij ◦ Lki = Lkj . (29)

We finally recall that the Laplace transformationLij of a two-dimensional conjugate net
provides the geometric meaning [7] of the two-dimensional Toda system. In fact, interpreting
in equations (22) and (28) the operatorLij as translation in the discrete variablen, we obtain

∂2 logβij (n)

∂ui∂uj
= βij (n)

βij (n− 1)
− βij (n + 1)

βij (n)
.

(ii) The Lévy transformationLi (x) of a conjugate netx is a net conjugate to theith
tangent congruence [13]; i.e., the lines〈x,Li (x)〉 aretangentto theith coordinate lines atx
(see figure 2).

The position points of the new net are given by [13, 11]

Li (x) = x− �[ζ,H ]

ζi
Xi (30)

where thetransformation dataζk, k = 1, . . . , N , are solutions of the linear system (12), and
�[ζ,H ] is a solution of the equations

∂�

∂uk
= ζkHk k = 1, . . . , N.

The corresponding transformations for the tangent vectorsXi are [24]

Li (Xi ) = −∂Xi

∂ui
+

1

ζi

∂ζi

∂ui
Xi

Li (Xk) = Xk − ζk
ζi
Xi k 6= i k = 1, . . . , N.

(31)

(iii) The adjoint Lévy transformationL∗i (x) of a conjugate netx is the ith focal net of
a congruence conjugate tox [13]; i.e., the lines〈x,L∗i (x)〉 aretangentto theith coordinate
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lines of the new net. The position points of the new net are given by [13, 11]

L∗i (x) = x−
Ω[X, ζ ∗]

ζ ∗i
Hi

whereζ ∗k , k = 1, . . . , N , is a solution to the adjoint linear system (13) andΩ[X, ζ ∗] is a
solution of the equations

∂Ω
∂uk
= Xkζ

∗
k k = 1, . . . , N.

The corresponding transformations for the tangent vectorsXi are [24]

L∗i (Xi ) = −Ω[X, ζ ∗]
ζ ∗i

L∗i (Xk) = Xk − βki Ω[X, ζ ∗]
ζ ∗i

k 6= i k = 1, . . . , N.
(32)

(iv) The fundamental transformationF(x) of a conjugate netx shares withx the same
conjugate congruence; i.e., the lines〈x,F(x)〉 intersectboth nets along the coordinate lines.
It can be viewed as the composition of Lévy and adjoint Ĺevy transformationsFi = Li ◦ L∗i .
Notice thatFi = Fj for all i, j . The fundamental transformation is given by [13]

Fi (x) = x−Ω[X, ζ ∗]
�[ζ,H ]

�[ζ, ζ ∗]
here�[ζ, ζ ∗] is a solution of

∂�

∂uk
= ζkζ ∗k k = 1, . . . , N.

The corresponding transformations for the tangent vectorsXi are [24]

Fi (Xj ) = Xj − Ω[X, ζ ∗]
�[ζ, ζ ∗]

ζj j = 1, . . . , N. (33)

We first remark that Ĺevy, adjoint Ĺevy and Laplace transformations are limiting cases of
the fundamental transformation, in which one of the two nets (or both nets) conjugate to the
congruence of the transformation are focal nets of the congruence [11].

We also remark that, from proposition 1, these transformations map solutions of the
multicomponent KP hierarchy into new solutions and, in this context, they were recently
investigated in [31], under the collective name of ‘Darboux transformations’, commonly used
in the soliton community [29, 24].

It is a common belief that Darboux-type transformations of integrable partial differential
equations generate their natural integrable discrete versions [27]. Furthermore, if the original
partial differential equation has a geometric meaning, the Darboux-type transformations
provide the natural discretization of the corresponding geometric notions [4, 25, 11]. For
example, if we consider a conjugate netx and two fundamental transformationsF1(x) and
F2(x) of it, the points

{x,F1(x),F2(x),F1(F2(x))}
are coplanar [13]. It turns out that a lattice

x : ZN → RM

n 7→ x(n)

N 6 M, whose elementary quadrilaterals are planar (i.e., a quadrilateral lattice) is the correct
discrete analogue of a conjugate net [34, 10]. The planarity condition can be expressed by the
following linear equation (cf (18))

1jXi = (TjQij )Xj i, j = 1, . . . , N i 6= j
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being its compatibility conditions

1kQij = (TkQik)Qkj i, j andk different (34)

the discrete analogue of the Darboux equations (14). The pointsx of the lattice can be found
by means of discrete integration of

1ix = (TiHi)Xi i = 1, . . . , N

whereHi are solutions of equations

1iHj = QijTiHi i, j = 1, . . . , N i 6= j.
In the above formulae,Ti is the translation operator in the discrete variableni :

Tif (n1, . . . , ni, . . . , nN) = f (n1, . . . , ni + 1, . . . , nN)

and1i = Ti − 1 is the corresponding partial difference operator.

4. Vertex operators as classical transformations of conjugate nets

In this section we show how the basic vertex operators associated with the multicomponent KP
hierarchy have a natural geometrical interpretation as the classical transformations of conjugate
nets.

4.1. Identification between partial charge transformations in the zero charge sector and
Laplace transformations

We first notice that the algebraic relations (28), (29) between the Laplace transformations
are the same as those satisfied by theAN−1 root lattice operators shifts (the Schlessinger
transformations)Sij (3), (4). In fact, both transformations can be identified as stated in the
following.

Proposition 2. The root lattice shiftSij in the directionαij is the composition of the Laplace
transformationLij with a trivial scaling symmetry of the Darboux equations.

Proof. Let us examine the Laplace transformation at the light ofτ -functions, by recalling
the definition of the rotation coefficients (8). Starting from (21) we obtainLij βij =
−εijβij ∂2 logτij /∂ui∂uj , where we have used (15) in the formτ 2∂2 logτ/∂ui∂uj = τij τji .
If in the previous identity we applySij we getτ 2

ij ∂
2 logτij /∂ui∂uj = (Sij τij )τ , so that

Lij βij = −Sij βij .
For the next three equations (22)–(24) the following identifications trivially hold

Lij βji = −Sij βji
Lij βki = εkiεkj εijSij βki
Lij βjk = εkiεkj εjiSij βjk.

The next two equations (25) and (26) derive from equation (16) once the shiftsS are
applied properly; namely, we have the identities

τik
∂τij

∂ui
− τij ∂τik

∂ui
= εkj εkiεij τSikτij

τkj
∂τij

∂uj
− τij ∂τkj

∂uj
= εkj εkiεij τSkj τij
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from where it follows

Lij βik = εkiεkj εijSij βik
Lij βkj = εkiεkj εjiSij βkj .

Finally, (17) leads to

Lij βkl = εkiεkj εliεljSij βkl .
These results can be summarized as

ak

al
Sij βkl = Lij βkl k, l = 1, . . . , N k 6= l

where:

ak = εkiεkj .
At this point we must remark that the Darboux equations have the following scaling

symmetryβij → aj/ai βij that comes from the freedom in the choice of the Lamé coefficients
Hi → aiHi , whereai = ai(ui), i = 1, . . . , N , are functions ofui only. �

Thus, aτ -function of the multicomponent KP hierarchy describes not only the integrable
deformations of a single conjugate net but also all its Laplace transforms.

4.2. Vertex operatorsGi andG∗i as Ĺevy transformations

Now we consider the action of the basic vertex operators at the level of Baker functions. In
the next proposition we identify the action of the vertex operatorGi (p) with the the classical
Lévy transformation.

Proposition 3. Given tangent vectorsXj , i = j, . . . ,M, associated with the Baker function
ψ(z, t) as prescribed in (19), then

Li (Xj ) = pδijV−i (p)(Xj )

whereLi stands for the Ĺevy transformation with data

ζj (t) := dnψji
dzn

(p, t) j = 1, . . . ,M

wheren > 0 is the order of the first non-zeroz-derivative of theith column ofψ(z, t) at z = p.

Proof. First, we observe that the following asymptotic expansion holds:

V−i (p)ψ(z, t) = [V−i (p)χ(z, t)]
(

1− z

p
Pi

)
ψ0(z, t)

=
[
− z
p
Pi + 1− 1

p
V−i (βPi) +O

(
1

z

)]
ψ0(z, t) (35)

which can be compared with

∂ψ

∂ui
=
[
zPi + βPi +O

(
1

z

)]
ψ0(z, t).

Thus, as bothV−i (p)ψ and∂ψ/∂ui belong to the Grassmannian elementW and taking into
account (10) and (11) we deduce

V−i (p)ψ = −
1

p

∂ψ

∂ui
+

(
1− 1

p
(V−i (p)− 1)βPi

)
ψ. (36)
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Moreover, by using the matrix form of equations (14)

Pj
∂ψ

∂ui
= PjβPiψ i 6= j

one gets

∂ψ

∂ui
= Pi ∂ψ

∂ui
+
∑
j 6=i

PjβPiψ = Pi ∂ψ
∂ui

+ (βPi − PiβPi)ψ.

Hence (36) becomes

V−i (p)ψ = ψ −
1

p
Pi
∂ψ

∂ui
+

1

p
PiβPiψ − 1

p
(V−i (p)βPi)ψ

or equivalently

PjV−i (p)ψ = Pjψ −
1

p
(V−i (p)βjiEji)ψ i 6= j (37)

and

PiV−i (p)ψ = −
1

p
Pi
∂ψ

∂ui
+ f (t)Piψ (38)

where

f (t) := 1 +
1

p
(1− V−i (p))βii .

From (35) we notice thatV−i (p)ψ(p, t)Pi = 0, so that by settingz = p in (37) and (38)
we conclude

1

p
(V−i (p)βji)(t) =

ζj (t)

ζi(t)

f (t) = 1

p

∂ logζi
∂ui

(p, t)

where

ζj (t) := dnψji
dzn

(p, t). (39)

Therefore, we may rewrite (37) and (38) as

(V−i (p)ψj )(z, t) := ψj (z, t)−
ζj (t)

ζi(t)
ψi (z, t) j 6= i

(V−i (p)ψi )(z, t) := − 1

p

∂ψi
∂ui

(z, t) +
1

p

∂ logζi
∂ui

(t)ψi (z, t).
(40)

The rows ofψ andV−i (p)ψ provide tangent vectors for conjugate nets, so that by comparing
(40) with (31) we obtain

Li (ψj ) = pδijV−i (ψj ).
Hence, from (19) we get the desired result. �

Now we identify the vertex operatorG∗i (p) with the adjoint Ĺevy transformation

Proposition 4. Given tangent vectorsXj , j = 1, . . . ,M, associated with the Baker function
as prescribed in (19), then

L∗i (Xj ) = 1

pδij
V+
i (Xj )
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whereL∗i stands for the adjoint Ĺevy transformation with data

ζ ∗j (t) =
dmψ∗ij
dzm

(p, t) j = 1, . . . ,M

with m being the order of the first non-vanishingz-derivative of theith row ofψ∗(z, t) at
z = p, and potential

Ω = − 1

p
[V+

i (p)ψi ]ζ
∗
i .

Proof. On the one hand, settingt′ = t− [1/p]ei in the bilinear identity (9) one gets

(1− Pi)V−i (p)β − β(1− Pi) + pPi − pχ(p, t)PiV−i (p)χ∗(p, t) = 0

which implies

βji(t) = p[V+
i (p)χji(p, t)]χ

∗
ii (p, t)

βij (t) = −p[V−i (p)χ
∗
ij (p, t)]χii(p, t)

χ∗ii (p, t)V
+
i (p)χii(p, t) = 1

for j = 1, . . . , N andi 6= j ; hence,

[V+
i (p)ψji ](p, t)

[V+
i (p)ψii ](p, t)

= lim
z→p

[V+
i (p)ψji ](z, t)

[V+
i (p)ψii ](z, t)

= [V+
i (p)χji ](p, t)

[V+
i (p)χii ](p, t)

= βji(t)χ
∗
ii (p, t)

pχ∗ii (p, t)

= 1

p
βji(t)

[V−i (p)ψ∗ij ](p, t)
[V−i (p)ψ∗ii ](p, t)

= lim
z→p

[V−i (p)ψ∗ij ](z, t)
[V−i (p)ψ∗ii ](z, t)

= [V−i (p)χ∗ij ](p, t)
[V−i (p)χ∗ii ](p, t)

= −βij (t)χii(p, t)
pχii(p, t)

= − 1

p
βij (t)

∂ logV+
i (p)ψii

∂ui
(p, t) = lim

z→p
∂ logV+

i (p)ψii

∂ui
(z, t) = −∂ logψ∗ii

∂ui
(p, t)

for j = 1, . . . , N and i 6= j . By using l’Hôpital rule with ζj (t) := dnψji
dzn (p, t) and

ζ ∗j (t) := dnψ∗ij
dzm (p, t), wheren andm are the orders of first non-vanishing derivatives of the

z-derivatives of theith column ofψ andith row ofψ∗, respectively, we get the identities:

V+
i (p)ζj

V+
i (p)ζi

= 1

p
βji

V−i (p)ζ ∗j
V−i (p)ζ ∗i

= − 1

p
βij

∂ logV+
i (p)ζi

∂ui
= −∂ logζ ∗i

∂ui

(41)

with j = 1, . . . , N andi 6= j .
On the other hand, from (40) it follows that

ψj = V+
i (p)ψj −

V+
i (p)ζj

V+
i (p)ζi

V+
i (p)ψi j 6= i

ψi = −
1

p

∂V+
i (p)ψi
∂ui

+
1

p

∂ logV+
i (p)ζi

∂ui
V+
i (p)ψi .
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Therefore, these relations become

ψj = V+
i (p)ψj −

1

p
βjiV+

i (p)ψi j 6= i

ψi = −
1

p

1

ζ ∗i

∂ζ ∗i V+
i (p)ψi
∂ui

.

(42)

In order to identify them with the Ĺevy transformations it is required to introduce the potential

Ω := − 1

p
[V+

i (p)ψi ]ζ
∗
i .

The second equation in (42) can be written as∂Ω
∂ui
= ψiζ ∗i ; now, we proceed to identify the

other partial derivatives:

−p ∂Ω
∂uj
= [V+

i (p)βij ][V
+
i (p)ψj ]ζ

∗
i + βji [V+

i (p)ψi ]ζ
∗
j

= −p[V+
i (p)ψj ]ζ

∗
j − p(ψj − V+

i (p)ψj )ζ
∗
j

= −pψj ζ ∗j j 6= i
where we have used equations (41) and (42). Thus, we deduce thatΩ is characterized up to a
constant vector by

∂Ω
∂uj
= ψj ζ ∗j j = 1, . . . , N.

With the aid ofΩ we express (42) as

V+
i (p)ψj = ψj − βji

Ω
ζ ∗i

j 6= i

V+
i (p)ψi = −p

Ω
ζ ∗i
.

Therefore, by comparing with (32) we have

L∗i (ψj ) =
1

pδij
V+
i (p)(ψj )

whereL∗i stands for the adjoint Ĺevy transformation with dataζ ∗j . �

Remarks.

(1) For the one component KP hierarchy our results for the Lévy transformations reduces to
those in [1] for the Darboux transformations.

(2) Notice that we might consider integer powers of the vertex operatorsV−i (p), sayV−i (p)ni ,
that models the shiftf (t) → f (t − ni [1/p]ei ). From our proposition 3 is clear that it
can be thought of as a sequence of Lévy transformations, that we will use in section 5.
However, we stress that, even when the initial Baker functionψ does not vanish atp,
its transformed function does; hence, we should take itsz-derivative atp to get the new
transformation data. Thus, the sequence is defined in terms of the truncated jet of the
initial Baker function:{

ψji(p, t),
dψji
dz

(p, t), . . . ,
dni−1ψji

dzni−1
(p, t)

}
.
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(3) In matrix terms the above propositions can be summarized as

Li (ψ) = pPi [Gi (p)ψ ]

(
− z
p

)Pi
L∗i (ψ) =

(
1

p

)Pi
[G∗i (p)ψ ]

(
−p
z

)Pi
.

(4) We notice that the correspondences provided by the last two propositions, derived from
the bilinear equation for Baker functions, are direct consequences, wheni 6= j , of Fay
identities for theτ -function. Namely, for the Ĺevy transformation the relevant Fay identity
is

εjkz
δjk−1pδki τjk(t− [1/z]ek)τ (t− [1/p]ei )

+εkiεjiz
δik−1pδki+δij−1τik(t− [1/z]ek)τji(t− [1/p]ei )

−εjkzδjk−1(p − z)δki τjk(t− [1/z]ek − [1/p]ei )τ (t) = 0 i 6= j.
For the adjoint Ĺevy transformation the corresponding Fay identity is

εjkz
δjk−1(p − z)δki τjk(t− [1/z]ek)τ (t + [1/p]ei )

−εkiεjizδik−1pδki−1τik(t− [1/z]ek + [1/p]ei )τji(t)

−εjkzδjk−1pδik τjk(t− [1/z]ek + [1/p]ei )τ (t) = 0 i 6= j.

4.3. The soliton vertex operator as fundamental transformation

In the context of theτ -function theory, the soliton solutions are generated by composite
vertex operators which are infinitesimally generated bybi(p)cj (q). It what follows we will
concentrate on the diagonal casei = j :

0i(p, q)τ (`, t) :=
(
p

q

)̀
i

exp(ξ(p, ti )− ξ(q, ti ))τ (`, t− [1/p]ei + [1/q]ei ).

Since02
i = 0 the exponential action reduces to

exp(aXi(p, q)) = 1 +0i(p, q).

We shall show here that it correspond to a fundamental transformation. To this end we need
the following proposition.

Proposition 5. Theτ -function satisfies the following identities for anyi, j, k ∈ 1, . . . , N :

εjkz
δjk−1 τjk(t− [1/z]ek)

τ (t)

−εikεjizδik−1pδji−1
1− p

q(
1− z

q

)δki τik(t− [1/z]ek + [1/q]ei )

τ (t− [1/p]ei + [1/q]ei )

τji(t− [1/p]ei )

τ (t)

= εjkzδjk−1

(
p

q

)δij (1− z
p

1− z
q

)δki
τjk(t− [1/z]ek − [1/p]ei + [1/q]ei )

τ (t− [1/p]ei + [1/q]ei )
. (43)

Proof. On the one hand, as one can readily check from (5), the right-hand side of (43) is, up
to exponential factors, just theτ -function representation of the components of the following
vector (

p

q

)δij
V−i (p)V

+
i (q)ψj .
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On the other hand, we know that this is the composition of an adjoint Lévy transformation,
with transforming functionζ ∗j (t) = ψ∗ij (q, t) and potentialΩ(z) = − 1

q
[V+

i (q)ψi (z)]ζ
∗
i , and

a Lévy transformation with dataζj (t) = (1− p/q)δij ψji(p, t) (the Baker function after the
first adjoint Ĺevy transformation is obtained fromV+

i (q)ψ by suitable normalization). Such a
composition is a fundamental transformation:

Fi (ψj ) = ψj −
Ω
�
ζj j = 1, . . . , N

where

Ω = −1

q
[V+

i (q)ψi ]ζ
∗
i

� = −1

q
[V+

i (q)ζi ]ζ
∗
i .

That is to say, the matrix elements of the Baker function satisfy

ψjk(z)− V
+
i (q)ψik(z)

V+
i (q)ψii(p)

ψji(p) =
(
p

q

)δij
V−i (p)V

+
i (q)ψjk(z) i, j, k = 1, . . . , N.

After substituting the expression (5) of the Baker function in terms of theτ -function we obtain
the desired identities. �

From (43) one arrives to the following result.

Proposition 6. Given tangent vectorsXj , i = j, . . . ,M, associated with the Baker function
ψ(z, t) as prescribed in (19), the induced action of the operatorexp(aXi(p, q)) is given by
the fundamental transformation

Fi (Xj ) = Xj − Ω
�
ζj j = 1, . . . , N

with transforming dataζj (t) = (1−p/q)ψji(p, t) andζ ∗j (t) = ψ∗ij (q, t), j = 1, . . . , N , and
potentials:

Ω = −1

q
[V+

i (q)Xi ]ζ
∗
i

� = −1

a

q`i−1

p`i
− 1

q
[V+

i (q)ζi ]ζ
∗
i .

Proof. In the expression (5) substitute the oldτ -function by the new one(1 + a0i(p, q))τ ,
paying particular attention, in the numerator, to the action ofV−k (z) on this new function. Then,
using (43), the definition (5) and comparing with (33) we obtain the desired result. �

Remarks.

(1) In the last two propositions we are assuming thatp and q are generic points for the
corresponding Baker functions; i.e.p andq are not zeroes ofψ andψ∗, respectively.

(2) An alternative derivation of (43) follows from the bilinear equation (2) by choosingt′ and
`′ appropriately and evaluating the corresponding residues of the integrand. In fact they
constitute a typical set of Fay identities:

εjkz
δjk−1pδki−1qδij−1(z− q)δki τjk(t− [1/z]ek)τ (t− [1/p]ei + [1/q]ei )

−εkiεjizδik−1pδki−1qδki+δij−2(p − q)τik(t− [1/z]ek
+[1/q]ei )τji(t− [1/p]ei )− εjkzδjk−1pδij−1qδki−1(z− p)δki τjk
×(t− [1/z]ek − [1/p]ei + [1/q]ei )τ (t) = 0.
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(3) Observe the presence of the parametera in the expression of the potential�. It plays the
role of an integration constant corresponding to the formula∂�

∂uj
= ζj ζ ∗j , j = 1, . . . , N .

(4) This result strongly suggests a similar statement for the more general soliton operator:
exp(1 +abi(p)cj (q)), but here we should have a composition of Lévy and adjoint Ĺevy in
different directions and the potentials would have now general integration constants.

5. Miwa transformation and quadrilateral lattices

Let us consider the bilinear identity (9) for the Baker functionψ(z, t) and its adjointψ∗(z, t).
For each complex numberp we can introduce new functions depending onN additional
discrete variables,n ∈ ZN , by defining

9(z, t,n) := ψ(z, t− n[1/p]) 9∗(z, t,n) := ψ∗(z, t− n[1/p])

where we understand that

t− n[1/p] = (t1− n1[1/p], t2 − n2[1/p], . . . , tN − nN [1/p]).

Obviously (9) becomes a continuous-discrete bilinear equation of the form∫
S1

dz9(z, t,n)9∗(z, t′,n′) = 0

for anyt, t′ ∈ CN ·∞ andn,n′ ∈ ZN .
From (6) it follows that

9(z, t,n) := 4(z, t,n)90(z, t,n)

9∗(z, t,n) := 90(z, t,n)
−14∗(z, t,n)

where

90(z, t,n) := ψ0(z, t) diag

((
1− z

p

)n1

, . . . ,

(
1− z

p

)nN)
and

4(z, t,n) := χ(z, t− n[1/p])

4∗(z, t,n) := χ∗(z, t− n[1/p])

have the following asymptotic expansion

4(z) ∼ 1− pQz−1 +O(z−2) z→∞
4∗(z) ∼ 1 +pQz−1 +O(z−2) z→∞

with

Qij (t,n) := − 1

p
βij (t− n[1/p]).

If we fix our attention on then dependence the asympotic module structure is now

W =
⊕
n>0

MN(C) · vn(n) vn(z,n) =
( N∑
k=1

1k

)n
9(z,n).

The linear systems for9 follow from the decomposition of the discrete derivatives of9 in
terms ofvn. A similar analysis holds for9∗ and we obtain the following.
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Figure 3. The quadrilateral lattice generated by Lévy transformations on a conjugate net.

Proposition 7. The objectsQ,9 and9∗ do satisfy

1kΨi = (TkQik)Ψk i 6= k (44)

1kΨ∗j = Qkj (TkΨ∗k) j 6= k. (45)

Remarks.

(1) Observe that (44) has been already proved in the first formula of (42), where one should
applyV−i (p) and perform the replacementV−i (p)→ Ti .

(2) The compatibility of (44) gives the discrete Darboux equation (34). It is clear thatXi (n)

andHi(n) can be obtained by the analogues of equations (19) and (20), respectively.
Hence, we have a quadrilateral lattice in the discrete variablen. From a geometrical
point of view this has a clear interpretation.
As we mentioned in section 3, the Darboux-type transformations of soliton equations
provide their integrable discretization [27]. In the present Miwa-like scheme the
translation Ti in the ni variable corresponds to the vertex operatorV−i (p). Since,
from proposition 3,V−i (p) corresponds to a Levy transformation thenx(n) describes
a quadrilateral lattice (see figure 3).

(3) Obviously our approach gives, through the Miwa transformation, aτ -function formulation
of the quadrilateral lattices and a quantum field theoretical representation of them in terms
of b-c systems. For completeness, we give theτ -function expression of the quadrilateral
lattice equation (34):

(Tiτ )(Tj τ )− τ(TiTj τ )− (Tiτij )(Tj τji) = 0 i 6= j
τ(Tkτij )− (Tkτ )τij − εij εikεkj (Tkτik)τkj = 0 i, j andk different.
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